NASA-TM~-11226%

Natural Manipulation of Surfaces via
Spatially Weighted Transformations

Steve Bryson

RNR Technical Report RNR-91-004, January 1991

NASA

National Aeronautics and
Space Administration

Ames Research Center
Moftett Field, California 94035

ARC 275 (Rev Feb 81)

e

Natural Manipulation of Surfaces via
Spatially Weighted Transformations

Steve Bryson

RNR Technical Report RNR-91-004, January 1991

Computer Sciences Corporation/
Applied Research Office, Numerical Aerodynamics Simulation Division
NASA Ames Research Center
MS T045-1
Moffett Field, Ca. 94035
bryson@nas.nasa.gov

Abstract

This paper describes a method of directly manipulating a surface in computer graphics. The
manipulation is natural in the sense that when a point on the surface is moved via some transformation,
other points on the surface follow the motion in a way reminiscent of taffy or putty. Points near the
point transformed move almost as much while points far away do not move at all. This is accomplished
by defining a 'bump' weight function on the surface which is shaped and placed by the user. After the
manipulation, the vertices of the surface are replaced by their transformed images. In this way the user
can naturally 'sculpt’ the surface by simply moving parts of it around. This system generalizes to any
transformation and any dimensionality. A simple implementation is described in detail.

Keywords: free-form surfaces, deformations, solid modeling, interaction techniques, direct
manipulation.

1: Introduction

1.1: Purpose and Motivation

The sculpting and manipulation of surfaces in computer graphics is a well-studied problem. The interactive
definition of surfaces has been addressed in many ways including splines and free form deformations [2, 4, 7, 8,
14, 15, 17]. The ability to 'reach out and grab’ a part of a surface for direct manipulation is the paradigm which
will be developed in this paper. The concept developed in this paper is that as a point p on a surface is 'grabbed
and moved', points near p move almost as much as p, while points far from p (perhaps) do not move at all (Fig 1).
In this way the surface can be treated as a stretchable material, much like putty or melted cheese. Thus a user would
be able to sculpt a shape out of a surface by moving parts of the surface where he or she wants them (fig. 2).
'Grabbing a point’ means indicating the point on the surface which is to be the center of the movement. "Moving
the point” means that the coordinates of that point are mapped to some other values through some transformation
T. In this paper it is assumed that there is some way of indicating the point to be grabbed, and of defining the
transformation. This paper describes a method of determining the motion of all the other points on a surface,
based on the movement of the grabbed point and parameters specified by the user.

Fig 1: Three stages in the manipulation of a surface, involving both translation and rotation.

To be useful, this method must give the user the capability of easily specifying:
- which points move with precisely the motion specified by the user
- which points on the surface do not move at all (so that moves can be independent)
- how the remaining points (which are between the two cases above) move.
In addition, the current specification of these parameters should be easy to understand and visualize.

While the basic idea of the points moving near the point grabbed is an obvious one, the user may also wish
for more exotic and non-local possibilities. These may include grabbing the entire edge of a surface, moving a
ring on the surface around the point grabbed (without moving the center of the ring), or moving the entire surface
as a rigid body. In general, there may be situations where moving an arbitrary subset of the surface is desired. The
method described in this paper allows in principle for all of these possibilities, and a limited implementation with
many of these features will be described.

In addition to sculpting, the method developed in this paper may be useful in the field of topological
visualization [9]. In this field, it is desired that the user be able to manipulate a surface under certain rules to
investigate the topological properties of that surface. There are methods of topological reasoning, i.e. surgery
[13] and handlebody theory [11], that are very visual but have no interactive tools other than hand drawings. The
development of a surface manipulation system specifically for topological visualization was the original
motivation for the work described in this paper. For this reason, it is desirable to have the manipulation of the
surface preserve the topology of that surface (roughly, how the vertices of the surface are connected).

Fig 2: Examples of surfaces sculpted using the method described in this paper. Clockwise
from upper left: two views of a cup; a boar's head; a cat mask.

While the method described in this paper is discussed in terms of the manipulation of two-dimensional
surfaces in three-dimensional space, the generalization to higher (or lower) dimensions is straightforward.

1.2 Brief Survey of Existing Solutions to the Manipulation Problem

The most well developed approach to the interactive manipulation of surfaces in computer graphics is based
on cubic interpolation through defining points. This concept has developed into the well known spline approach
and its variants [2, 7, 8], which use control points to determine the shape of the surface. These control points
may or may not actually be on the surface to be manipulated. The spline approach has the advantage that
relatively few points can be used to define a surface, but the disadvantage that when the control points are moved,
the changes in the surface do not precisely track the motion of the control point. Instead the surface changes in
highly constrained and at times non-local ways (depending on the type of spline used). This problem has been
addressed with the concept of hierarchical spline systems [8]. Using splines, it is difficult to change from, for
example, highly localized to very broad manipulations at a given point. This difficulty is because the control
points actually define the surface, not the parameters of the manipulation of the surface. Thus changing the
behavior of the control points do requires a redefinition of the surface. To avoid these problems, the method
described in this paper separates the parameters of the manipulation of the surface from the definition of the
surface. Also, in the more versatile and advanced spline methods the manipulation is via control points that are
off the surface: the surface itself is not grabbed, and knowing which control point is appropriate for the desired
motion is not obvious. Finally, the generalization to higher dimensional splines is simple in principle but
technically non-trivial.

Another, more recent, method of surface manipulation is that of free-form deformation [15, 4], which assigns
a three-dimensional lattice to a volume enclosing the object to be deformed. The coordinates of the object are
computed with respect to the lattice. The lattice is then deformed through the manipulation of its vertices, which
produces deformed coordinates at each lattice vertex. The coordinates of the vertices in the object in lattice
coordinates are then composed with the coordinates of the deformed lattice vertices to produced a distortion of the
object. This method has several advantages: the distinction between the object definition and the distortion
definition; the ability to produce both local and global deformations by dynamic choice of the lattice; and the
trivial generalization to arbitrary dimensions. In this system, however, it is the lattice points, not the surface
itself that is 'grabbed’. Also, only those distortions that are allowed by available lattices are possible [4]. More
seriously, if pieces of a surface are folded over on each other, one can encounter situations where two parts of the
surface are in the same lattice cell, making it difficult to move them apart again. Finally, even if the lattice for the
desired manipulation is available, the user must know which one it is and select it, thus entailing some extra work.

A surface manipulation system based on the deformable surfaces developed by Terzopoulos et.al. [16] has
been implemented by Waters and Wang [17]. This system enables the direct manipulation of surfaces, and the
problem of the motion of neighboring vertices is solved through treating the surface as some physical medium.
While Waters and Wang's approach shares many intuitions with the system developed in this paper, the physical
simulation underlying their approach would constrain the types of manipulations allowed. Further, the
computational task involved in computing the physical simulations constrains the real-time capabilities of an
implementation.

A completely different approach to the deformation of surfaces and solid objects is that of Barr [1], where
objects are deformed through linear transformations that are weighted with a function of time or position. While
Barr did not suggest a method of manipulation, his underlying principles are very similar to those described in
this paper.

As part of a general system for sculpting 3D data, Parent [14] described a simple scheme which is also similar
to the method developed in this paper. Parent presents an interpolation scheme in which the movement of a point
on a surface causes nearby points to move as if they are elastically attached to the moved point. This scheme has
the beginnings of the system developed in this paper, but is limited to the movement of individual points and uses
a non-intuitive weighting function.

In a sense, the system described in this paper is a combination and generalization of both Barr's and Parent's
work in such a way that an interface is easy to construct.

1.3 Brief Description of the Algorithm

The purpose of the system described in this paper is to allow the user to ‘reach out' and 'grab’ a virwal surface
with an input device, and as the user moves the input device:

a) some specified region of the surface moves precisely as indicated by that device,

b) some other specified region of the surface does not move at all
and

c) the rest of the surface nicely interpolates between these two regions.
This system treats the surface as a collection of vertices with connectedness, and defines a transformation T on
these vertices via some input device. A smooth mask m is generated which is equal to 1 in some specified region
where the vertices will be transformed by T, 0 in some other specified region where the vertices will not be

transformed at all, and some number between 0 and 1 everywhere else, so that these vertices will be transformed by
m*T.

In effect, we are defining a weighting function m(v) on each vertex v such that 0 < m(v) < 1. Further, this
weighting function is to be continuous in the sense that m(v) = m(s, t) where s and t are parameters on the surface
at the vertex v and m(s, t) is continuous, and that derivatives to some specified order exist and are continuous. In
fact, a weight function which has continuous derivatives to all orders (i. e. is smooth) everywhere except for a
one-dimensional curve (where the second derivative is discontinuous) will be used. This means that in practice,
since the probability of a vertex falling on this curve is zero, the ransformations on the vertices will be smooth
everywhere. While many other weight functions that are less smooth will be similarly well behaved in practice,
we have chosen one that a) has a nice shape, b) is almost smooth, and c) is not too time consuming to compute (A
similar function that is smooth everywhere is defined in terms of integrals which must be evaluated numerically).

When the surface is 'grabbed’ and manipulated, only the part of the surface grabbed should move, and not any
overlapping or intersecting parts of the surface. This requires that we define the continuity of the weight function
with respect to distances along the surface, not the distance between vertices in three dimensions. More
specifically, we are demanding that the weight function is local with respect to the surface, not with respect to the
space the surface is immersed in. This way if, for example, the surface self-intersects we can manipulate one part
of the surface at the intersection without moving the intersecting part.

Once a single manipulation of the surface has been performed, the vertices defining the surface are replaced by
their images under the masked transform described above, producing a new surface which may again be
manipulated. In this sense, this system is iterative: the surface is replaced by its manipulated image.

2: Theory

2.1 Definition of the bump weighting function

A weighting function is needed that is constant and equal to one in some set of numbers, is constant and equal
to O outside some larger set of numbers that contains the first one, is monotonically decreasing from 1 to 0 in
between, and is smooth. A function which is versatile, easy to control, and has a nice shape is the bump function.

The construction of this function is based on the function

0 x<0
fx) = c-(x'z) x>0

f(x) has well-defined derivatives to all orders at O (its derivatives are of the form (polynomial in x)*(polynomial
in (1/x))*f(x), and f(x) will go to zero faster than the polynomial in (1/x) diverges as x goes to zero) [10, exercise
1.1.18]. This function is used to construct the smooth step function

0 x <0
X -2
s(x, a) = e'(a-x 0O<x<a
1 X 2 a

which has continuous derivatives to all orders at x=0 (fig. 3). At x=a, where a is any positive number, this
function has discontinuous second and higher derivatives. (In general, the function

0 x <0
X\-P
sp(x, 2, p) = e'(a—x O0<x<a
1 X 2a

will have continuous derivatives up to order p-1 at x=a. Thus one can have higher degrees of continuity at x=a at
the cost of steeper bumps.) By translation, the function

step(x, 10, r1) = s(x-10, r1-r0)

is a function that is equal to 0 for x < r0, equal to 1 for x 2 rl, and is smooth between r0 and r1, where 0 <10 <rl.
Finally, one can define the bump function, given by

_ step(x, ¢-10, c-r1) x<c

bump(x, ¢, 10, r1) = { step(2c-x, c-10, c-r1) X2cC

where c is any number which gives the center of the bump, r1 is the distance from the center within which the
bump is equal to 1, and r0 is the distance from the center beyond which the bump is equal to 0 (fig 4).

The function bump(x, ¢, 10, r1) defines a bump which is controlled by three parameters: c, which is where on
the real line the bump sits; r0, the width of the nonzero parts of the bump; and r1, the width of the plateau where
the bump is constant and equal to one. Changing c changes the location of the bump. Changing r0 changes the
size of the nonzero part of the bump, and finally changing r1 changes the size of the plateau of the bump. The
task of controlling the bump is the task of controlling these three parameters.

¢ r0 2
rl
1
1 —
0
0 —
c-r0 c-rl € lc+rl c+r0
X=a
Fig 3: The basic step function Fig. 4: The bump function, showing the
s(x, a). parameters c, rl, r0 which define the bump.

2.2: Definition of the vertex transformation for the local manipulation of a surface.

The bump function defined in section 2.1 is very useful for specifying the way in which a surface is
. manipulated. Intuitively, when a user specifies that a surface has been grabbed at a particular point p and moves
the controller to define some transformation T, then the surface close to p should be fully transformed by T,
moving with the controller. The effect of the transformation should fall off gradually with increasing distance
from p on the surface, until far away, the surface does not move at all. This is accomplished by using the bump
function with x = distance from p and taking c to be zero (the definition of distance and nonzero values of ¢ will be
discussed shortly). At each vertex of the surface, the transformation at that vertex is defined as:

T'(x) = bump(x, ¢, 10, r1)*T + (1-bump(x, c, 10, r1))*Id

where x is the distance of the vertex from p and Id = the identity transformation. This is simply a weighted linear
combination of the identity transformation and the transformation T defined through the user's input. Where
bump(x, ¢, 10, r1) = 1, T'(x) = T, and where bump(x, c, 10, r1) = 0, T'(x) = Id. Note that T need not be a linear
transformation, but can be any map from three-dimensional space to three-dimensional space.

There is one serious ambiguity in this scheme: the definition of distance on the surface. One could use the
euclidean three-dimensional distance between the vertices, but when the surface is folded over on itself, say folded
corner to comer, then grabbing one corner will cause the opposite corner to move (See fig. 5). The points in the
center of the surface, which we usually call closer to one corner than the opposite corner, will move less, and the
effect could be that we have grabbed the two corners at once. While this may be desirable in special circumstances
(see the section on topology below), this is not what is intuitively meant by "grabbing the surface at a point".

o\
P

Fig 5: A cross section of a folded surface. The circle shows where the weight function is
nonzero if the weight function is a function of the distance between the vertices on the
surface. Then if vertex p is grabbed and moved, vertex g will also be moved, even though p is
far from q with respect to distance measured on the surface.

The simplest solution is to treat the surface as a parameterized surface, so that the initial undeformed surface is
the image of some (preferably smooth) function (s, t) which, for each value of s and t, gives a point in three-

dimensional space. This means that each vertex defining the initial surface is an image of ¥(s, t) for some
particular value of s and t. The parameterization of the surface can be chosen (for convenience) so that the entire
surface is the image of the square 0 < s < 1 and 0 < t< 1 (fig. 6). We can then define the distance between two
vertices as the distance in (s, t) space between the two points on the square which get mapped to those vertices.
Given a point p on the surface and its corresponding parameters (sp, tp), then a point that is closer than another in
(s, t) space will map to a point that is closer on the surface. When the surface is deformed after manipulation,
vertices that come from similar values of (s, t) will be closer together than vertices that come from very different
values of (s, t), so the weighting function will stili be local with respect to the surface.

/'
l’ 1 /_'_>
@b Y(s, v)

(0,1)

©, 0) 1, 0) >

Fig 6: The definition of a parametrized surface as a function from the unit square to three-
dimensional space. The image of the circle on the surface represents where the weight function
is nonzero, when distance is measured in the (s, t) parameter space.

There is one disadvantage to this definition of distance on the surface. If adjacent vertices on a surface are
stretched far apart, they will still be treated as adjacent and therefore near with respect to the bump function. This
is because they are images of nearby points in the parameter space. Thus vertices that have been moved far apart
can move together if one of them is grabbed. Another way to see this problem is that the bump function, which is
circular on the undistorted surface, will be distorted on the distorted surface. Possible solutions to this problem
will be briefly discussed in section 4. In the current implementation of this system, an interface (which is
discussed in section 3.3) was developed that gave the user the ability to work around this problem.

When the parameter c in the bump function is taken to be non-zero, then the weight function will form a ring
about the point p (fig. 7). If ¢ > 10, there will be an area in the center of the ring, centered at p, that will not move
at all. Examples of the usefulness of this capability will be given below.

Fig 7: A translation of a portion of the surface defined by a bump function with a non-zero
value of c. The surface is grabbed in the center of the ring.

Note that the above discussion trivially extends to a parameterized surface of any dimension in a space of any
dimension. Let ¥ be a map from an n-dimensional parameter space to an m-dimensional space (usually we take n <
m). T and T'(x) would then map from m-dimensional space to m-dimensional space, and if they are linear
transformations they would be m x m matrices. The bump weight function would then be a function of the distance
in the n-dimensional parameter space. In this way the method described here can be used to manipulate volumetric
objects.

Note also that the definition of T'(x) can be generalized to any weight function. The bump function is treated
specially because its parameters correspond to those aspects of the manipulation over which we desire the most
control, namely the size of the region of the surface effected.

2.3: Surfaces With Topologies Different From the Square.

The topology of a surface is the way that the surface is connected. In the case of polygonal surfaces, the
topology is determined by how the vertices of that surface are connected. There are parameterized surfaces that,
while being the image a square, are topologically different from a square. Examples include the sphere, cylinder,
and torus (fig. 8). Consider the sphere. The usual definition of the sphere as a parameterization of the square is
obtained by identifying two opposite edges (say the edges parallel to the vertical axis), and identifying all points
on each of the other edges (parallel to the horizontal axis). (Identifying points means that they are mapped to
exactly the same coordinates in three-dimensional space.) This is much like the latitude/longitude system on the
Earth. Using the above definition of distance in the bump function, grabbing the corner (say at (0, 0) in parameter
space) and moving it will cause only those points around the image of that corner on the sphere to move. This
will cause that part of the surface to be disconnected from the image of the comer (at (0, 1)) with which it should be
identified, and the surface will become a sphere with a hole in it. If we want our manipulation to preserve the
topology of the surface, this cannot be allowed to happen.

A simple solution is to define the distance between vertices used in the bump function to be the three-
dimensional distance between vertices in the undeformed surface rather than in the parameter space. In the case of
a planar initial surface, this definition of distance will be equivalent to that given above. In the case of surfaces
with different topologies, however, this definition of the surface will give very different results. Points that are
close together in the undeformed surface will be treated as close together in the deformed surface. This will cause
points that are identified to move in identical ways, and so stay identified. This will assure that the topology of
the surface is preserved.

3: Example Implementation

The system described above was implemented based on parameterized two-dimensional surfaces in three
dimensions. As the surfaces are parameterzied, the vertices on the surface are defined by three functions (called
components of the vertex) of two parameters (called parameters of the vertex). Thus each vertex has a pair of
parameters and three components. The connectedness of the surface is defined by the ordering of the parameters,
and in fact the coordinates of a vertex are stored in arrays indexed by the parameters of that vertex. This simplifies
many tasks, such as finding the parameters of a vertex given its coordinates via a search of the coordinate arrays.
When the user selects a vertex to be the 'pickup point' on the surface, the parameters of that point are determined
in this manner.

Fig 8: Examples of two-dimensional surfaces with different topologies. Clockwise from
upper left: plane; sphere; cylinder; torus.

In an implementation of the theoretical structure described above, three logically independent tasks have to
be performed, given a grab point on the surface and a transformation to be applied at that point:

- Define the shape of the bump weighting function on the surface as a function of distance from the grab
point

- Compute of the weighting function centered at that point for all vertices on the surface

- Compute the weighted transformation of each vertex in the surface.

Externally, the user specifies the shape of the bump function, selects a grab point to center the bump, and
indicates a transformation by moving the grab point in some allowed way. The shape of the bump function is
determined by the values of the parameters c, r0, and rl defined in section 2.1.

3.1 Controlling the Shape of the Bump Weight Function

The interface for the control of the shape of the basic bump function is given by drawing a graph of the
current bump function on the screen (fig 9). Handles representing the parameters c, 10, and rl are superimposed on
the graph. The user can ‘click and drag' these handles to change the values of the corresponding parameters, and as
the bump is redefined the graph is redrawn, giving the user feedback on the new shape of the bump.

The user must be given some indication of the strength of the bump on the surface. This feedback is
particularly important in light of the fact that the bump function on the surface will be distorted as the surface is
distorted, as described in section 2.2. Even without this problem, however, the possibility of exotic bump shapes
(such as rings and radial modulations) requires that the user have good feedback as to exactly where on the surface
the bump function will cause vertices to move. In the current implementation, this problem was solved by
coloring the vertices on the surface according to the value of the bump. The color of each vertex is defined to be
an interpolation between two colors, with the value of the bump function at that vertex as the interpolation
parameter (fig 9).

Other weight functions beyond the bump function will need appropriate interfaces. In some sense, it is the
interface that determines which weighting functions are useful, and in fact it is its relative ease of definition that
makes the bump function so nice. The radial modifications to the bump function described in section 3.2 will need
such an interface. One possibility would be a version of this system that manipulates one-dimensional surfaces in
two dimensions, with appropriate constraints.

3.2 Computing the Bump Weight Function

Once the user has indicated a vertex p, which is considered the grabbed vertex, the parameters of p, (ps, pt) are
determined. Then for all values of the parameters (s, t) for which there are vertices, the value of the bump function

are computed as bump(r, c, 10, r1), where r is the euclidean distance from (ps, pt) to (s, t) = ‘j(ps-s)z + (pt-t)2.
The value of bump(r, c, 10, r1) is stored in an array bvai[s][t] (with s and t appropriately converted to indices),
which corresponds to the vertex with parameters (s, t).

When the topology of the surface is non-trivial, as described in section 2.3, then some additional structure is
required. On startup, the vertex components of the parameterized surface prior to any deformation are stored in the
array of 3D vectors init[s}[t]. Then when the grab point p is selected as described above, the bump function at all
other vertices of the surface are computed as bump(r, c, 10, r1) where now r is the euclidean distance in three
dimensions from init{ps]{pt] to init{s]{t]. In this way, if two vertices coincide on the initial surface, they will be
transformed identically and so will always coincide.

In addition to the control over the shape of the bump function described above, an ability to enrich the shape

of the bump was implemented by replacing the r computed in the above paragraphs by r/f(8), where f(8) is some
(preferably periodic) function, and 8 is an angle parameter defined as arctan(ds/dt) where ds =ps - t, dt=pt-t. In

this way irregular, radial variations in the bump can be easily implemented. In the author's implementation, f(6)
is a simple ellipse with variable eccentricity and phase (fig. 9).

3.3 Transforming the Vertices

The transformations that are supported in this implementation are translation, rotation, and scaling. These
transformations are controlled with mouse and keyboard combination commands.

When the user indicates that a vertex p (with components (px, py, pz)) on the surface is to be grabbed, the
value of the bump function centered at p is computed at each vertex of the surface as described in section 3.1.
Then, by moving the input device, the user indicates the translation (tx, ty, tz), rotation R, and scale
transformation (scalex, scaley, scalez) that are to be applied to the surface (fig. 10). The transformation at each
vertex v with parameters (s, t) is weighted by the value in bval[s][t] at that vertex as follows:

Fig9: The user's surface manipulation environment. In each figure, the line drawing under
the surface is a graph of the bump function as a function of distance. The colored dots are the
handles that the user moves to control parameters of the bump. The circle in the upper left
allows the specification of radial distortions in the bump. The white area on the surface is the
region where the bump function is non-zero. Upper left: The plane prior to manipulation.
Note the cursor surrounded by white area. Upper Right: The surface after translation upwards
weighted by the bump function indicated by the white area in the upper left figure. Lower left:
a radially distorted bump weighting a translation upwards. Note from the graph below the
figure that the bump is now very broad. The circle in the upper left of the figure has become
an ellipse. The white area is now elliptical on the surface, so an elliptical hump is lifted by
the transformation. Lower Right: An example of many translations and rotations weighted
by many differently shaped bump functions, with the bump editing tools turned off.

ex O 0 1-bval[s]{t] O 0
T'(v) = bval[s][t] |0 scaley 0 R+ |0 1-bval[s}{t] O
0 0 scalez 0 0 1-bval[s][t]

This transformation is then applied to the current components of vertex v = (vx, vy, vz) as

vx' -px x+tx*bval[s][t]
(vy’):T'(v) ﬁ-py)+ Gyﬂy*bval[s}[t])

vz' vZ-pz z+tz*bval[s][t]

Thus the transformations are applied to each vertex centered around p. In particular, the rotations and the
scaling take p as the origin.

Fig 10: Three basic transformations: translation, rotation, and scaling. The scaling is
performed after a translation.

3.4 Optimization and Performance
There are two computationally intensive aspects of this implementation of this system:

- Computation of the value of the bump function at each vertex. This involves computing square roots,
exponentials, and (to enable radial modifications) arc tangents. These must be performed for every
vertex on the surface, unless special constraints are imposed on the bump function (such as bump(x, c,
10, r1) = 0 for x > some value). They need to be done every time the user changes the shape of the bump
(so the vertices effected by the bump can be displayed) or selects a new grab point. While these actions
can be treated as discrete events, the ability to change the bump shape and move the grab point in real
time is desirable so that the effect on the surface can be seen.

- Computation of the vertex transformation and transforming the vertex components for each vertex on the
surface. Where the weight function is zero, the vertex transformation is the identity, so optimization
would include checking for this case.

On an SGI iris 4D340/VGX running on a single processor, all of the above tasks ran at at least 10 frames/sec
on a surface of 20 x 20 vertices, not including rendering time. As the number of vertices in the surface increased,
the performance of the system dropped to about 2 frames/sec when recomputing the bump function with a surface
of 100 x 100 vertices.

4: Future Work

There have been several issues raised in the development of this system. With respect to the existing
implementation, the outstanding problem is the definition of distance on the surface. The methods described in
section 2.2 above were motivated by the desire to keep the manipulation local with respect to the surface, and not
with respect to the way that surface is embedded in three-dimensional space. A fast way to compute the distance
along the surface in the three-dimensional space would be a better solution. This would require something like
geodesic distance on a surface of arbitrary shape. If the surface is parameterized and is topologically the same as
the square, one approach is the following: find those vertices whose parameters are close to the straight line
between the points of interest in the parameter space and sum the euclidean distance between their components.
While this is not exactly the same as the geodesic on the surface, this will give a sense of distance on the surface
without the problems encountered above. Implementing this idea in real time is non-trivial, however. Also, in
the case of non-trivial topologies such as spheres, straight lines will in general not correspond to the geodesics
on the surface.

Until such a definition of distance on a surface is developed, perhaps there is some altemnate definition of
distance that can be developed, using the definition in section 2.2 weighted by some distance in three dimensions.
The user interface for specifying the 'grab point' on the surface and the transformation manipulating the
surface can be further developed. Manipulations typically involve rotations and translations, and the user would
be greatly aided by perceiving the surface as a three dimensional object. Thus it would be desirable to implement

this system in the virtual environment interfaces that have been recently developed [5, 6, 12, 3].

Another interesting direction is the exploration of weight functions that are more general than the bump
function. Certainly, a surface manipulation tool kit will have many choices for the weight function. The main
difficulty to overcome is the development of the user interface to allow the definition of general weight functions.

For a topology visualization tool kit, several features beyond the current system are required. A
visualization tool for surgery and handlebody theory would require, besides the direct manipulation of surfaces, the
ability to attach surfaces together and cut surfaces apart. This is a problem for both the internal representation of
the surfaces and the user interface for specifying the attach and cut points. It will also be necessary to control the
rendering in sophisticated ways will be necessary, so that the user can see the interior of complicated, folded
surfaces. A method of constraining the motion and detecting intersections of the surface would permit the
investigation of categories of surface manipulation other than those which permit intersections.

Acknowledgements

The Author would like to thank his colleagues in the Advanced Research Office of the NAS division at NASA
Ames for their many helpful comments and discussions, particularly Sam Uselton, Creon Levit, Mike Yamasaki,
Al Globus, Kyra Lowther, and Horst Simon. Thanks also to Jeff Hultquist for help with Postscript and John
Krystynak for enthusiasm. Special appreciation goes to Profs. Andrew Hanson and Louis Kauffman for being
sources of inspiration and for their very warm encouragement.)

References
1 Barr, A., Global and Local Deformations of Solid Primitives, Computer Graphics, Vol 17, #3, July
1984, pp 21-30
2 Bartels, R., Beatty, J, and Barsky, B., An Introduction to Splines for use in Computer Graphics and

Geometric Modeling, Morgan Kaufmann, Los Altos, CA. 1987

3 Bryson, S. and Levit, C., A Virtual Environment for the Exploration of Three-Dimensional Steady
Flows, RNR Technical Report #RNR-90-013, 1990, to appear in Proceedings of the 1991 SPIE
conference on Stereoscopic Displays and Applications, San Jose, Ca. 1991

4 Coquillart, S., Extended Free-Form Deformation: A Sculpting Tool for 3D Geometric Modeling,
Computer Graphics, Vol 24, #4, July 1990, pp 187-193

5 Fisher, S. et. al., Virtual Environment Interface Workstations, Proceedings of the Human Factors
Society 32nd Annual Meeting, Anaheim, Ca. 1988

6 Fisher, S., Virtual Environments, Personal Simulation and Telepresence, Implementing and Interacting
with Real Time Microworlds, Course Notes, Vol. 29, SIGGRAPH 1989

7 Foley, J., vanDam, A, Feiner, S., and Hughes, J., Computer Graphics: Principles and Practice 2nd Ed.,
Addison-Wesley, Reading, MA. 1990

10

10

11

12

13

14

15

16

17

Forsey, D., and Bartels, R., Hierarchical B-Spline Refinement, Computer Graphics, Vol 22, #4, August
1988, pp 205-212

Francis, G., A Topological Picturebook, Springer-Verlag, New York, NY. 1987
Guillemin, V. and Pollack, A., Differential Topology, Prentice-Hall, Englewood Cliffs, NJ., 1974

Kirby, R., The Topology of 4-Manifolds , Lecture Notes in Mathematics #1374, Springer-Verlag, New
York, 1989

MacDowall, 1., Bolas, M., Pieper, S., Fisher, S. and Humphries, J., Implementation and Integration of a
Counterbalanced CRT-based Stereoscopic Display for Interactive Viewpoint Control in Virtual

Environment Applications, Proceedings of the 1990 SPIE Conference on Stereoscopic Displays and
Applications, Santa Clara, Ca. 1990

Milnor, J., Lectures on the h-Cobordism Theorem, Mathematical Notes #1, Princeton University Press,
Princeton, NJ.,1965

Parent, R., A System for Sculpting 3-D Data, Computer Graphics, Vol 11, #2, July 1977, pp 138-147

Sederberg, T. and Parry, S., Free-Form Deformation of Solid Geometric Models, Computer Graphics, Vol
20, #4, July 1986, pp 151-160

Terzopoulos, D., Platt, J., Barr, A. and Fleischer, K., Elastically Deformable Models, Computer
Graphics, Vol 21, #4, July 1987, pp 205-214

Waters, K. and Wang, S., A 3D Interactive Physically-Based Micro World, Extracting Meaning from
Complex Data: Processing, Display, Interaction, SPIE Vol. 1295 1990

11

